Skip to contents

This vignette demonstrates how to serialize ensemble models to JSON files and deserialize back to an R session, where the forests and other parameters can be used for prediction and further analysis.

We also define several simple functions that configure the data generating processes used in this vignette.

g <- function(x) {ifelse(x[,5]==1,2,ifelse(x[,5]==2,-1,-4))}
mu1 <- function(x) {1+g(x)+x[,1]*x[,3]}
mu2 <- function(x) {1+g(x)+6*abs(x[,3]-1)}
tau1 <- function(x) {rep(3,nrow(x))}
tau2 <- function(x) {1+2*x[,2]*x[,4]}

Demo 1: Bayesian Causal Forest (BCF)

BCF models are initially sampled and constructed using the bcf() function. Here we show how to save and reload models from JSON files on disk.

Model Building

Draw from a modified version of the data generating process defined in Hahn, Murray, and Carvalho (2020).

# Generate synthetic data
n <- 1000
snr <- 2
x1 <- rnorm(n)
x2 <- rnorm(n)
x3 <- rnorm(n)
x4 <- as.numeric(rbinom(n,1,0.5))
x5 <- as.numeric(sample(1:3,n,replace=TRUE))
X <- cbind(x1,x2,x3,x4,x5)
p <- ncol(X)
mu_x <- mu1(X)
tau_x <- tau2(X)
pi_x <- 0.8*pnorm((3*mu_x/sd(mu_x)) - 0.5*X[,1]) + 0.05 + runif(n)/10
Z <- rbinom(n,1,pi_x)
E_XZ <- mu_x + Z*tau_x
group_ids <- rep(c(1,2), n %/% 2)
rfx_coefs <- matrix(c(-1, -1, 1, 1), nrow=2, byrow=TRUE)
rfx_basis <- cbind(1, runif(n, -1, 1))
rfx_term <- rowSums(rfx_coefs[group_ids,] * rfx_basis)
y <- E_XZ + rfx_term + rnorm(n, 0, 1)*(sd(E_XZ)/snr)
X <- as.data.frame(X)
X$x4 <- factor(X$x4, ordered = TRUE)
X$x5 <- factor(X$x5, ordered = TRUE)

# Split data into test and train sets
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- X[test_inds,]
X_train <- X[train_inds,]
pi_test <- pi_x[test_inds]
pi_train <- pi_x[train_inds]
Z_test <- Z[test_inds]
Z_train <- Z[train_inds]
y_test <- y[test_inds]
y_train <- y[train_inds]
mu_test <- mu_x[test_inds]
mu_train <- mu_x[train_inds]
tau_test <- tau_x[test_inds]
tau_train <- tau_x[train_inds]
group_ids_test <- group_ids[test_inds]
group_ids_train <- group_ids[train_inds]
rfx_basis_test <- rfx_basis[test_inds,]
rfx_basis_train <- rfx_basis[train_inds,]
rfx_term_test <- rfx_term[test_inds]
rfx_term_train <- rfx_term[train_inds]

Sample a BCF model.

num_gfr <- 10
num_burnin <- 0
num_mcmc <- 100
num_samples <- num_gfr + num_burnin + num_mcmc
bcf_params <- list(sample_sigma_leaf_mu = F, sample_sigma_leaf_tau = F)
bcf_model <- bcf(
    X_train = X_train, Z_train = Z_train, y_train = y_train, pi_train = pi_train, 
    group_ids_train = group_ids_train, rfx_basis_train = rfx_basis_train, 
    X_test = X_test, Z_test = Z_test, pi_test = pi_test, group_ids_test = group_ids_test, 
    rfx_basis_test = rfx_basis_test, 
    num_gfr = num_gfr, num_burnin = num_burnin, num_mcmc = num_mcmc, 
    params = bcf_params
)

Serialization

Save the BCF model to disk.

saveBCFModelToJsonFile(bcf_model, "bcf.json")

Deserialization

Reload the BCF model from disk.

bcf_model_reload <- createBCFModelFromJsonFile("bcf.json")

Check that the predictions align with those of the original model.

bcf_preds_reload <- predict(bcf_model_reload, X_train, Z_train, pi_train, group_ids_train, rfx_basis_train)
plot(rowMeans(bcf_model$mu_hat_train), rowMeans(bcf_preds_reload$mu_hat), 
     xlab = "Original", ylab = "Deserialized", main = "Prognostic forest")
abline(0,1,col="red",lwd=3,lty=3)

plot(rowMeans(bcf_model$tau_hat_train), rowMeans(bcf_preds_reload$tau_hat), 
     xlab = "Original", ylab = "Deserialized", main = "Treatment forest")
abline(0,1,col="red",lwd=3,lty=3)

plot(rowMeans(bcf_model$y_hat_train), rowMeans(bcf_preds_reload$y_hat), 
     xlab = "Original", ylab = "Deserialized", main = "Overall outcome")
abline(0,1,col="red",lwd=3,lty=3)

Demo 2: BART

BART models are initially sampled and constructed using the bart() function. Here we show how to save and reload models from JSON files on disk.

Model Building

Draw from a relatively straightforward heteroskedastic supervised learning DGP.

# Generate the data
n <- 500
p_x <- 10
X <- matrix(runif(n*p_x), ncol = p_x)
f_XW <- 0
s_XW <- (
    ((0 <= X[,1]) & (0.25 > X[,1])) * (0.5*X[,3]) + 
    ((0.25 <= X[,1]) & (0.5 > X[,1])) * (1*X[,3]) + 
    ((0.5 <= X[,1]) & (0.75 > X[,1])) * (2*X[,3]) + 
    ((0.75 <= X[,1]) & (1 > X[,1])) * (3*X[,3])
)
y <- f_XW + rnorm(n, 0, 1)*s_XW

# Split data into test and train sets
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- as.data.frame(X[test_inds,])
X_train <- as.data.frame(X[train_inds,])
W_test <- NULL
W_train <- NULL
y_test <- y[test_inds]
y_train <- y[train_inds]
f_x_test <- f_XW[test_inds]
f_x_train <- f_XW[train_inds]
s_x_test <- s_XW[test_inds]
s_x_train <- s_XW[train_inds]

Sample a BART model.

num_gfr <- 10
num_burnin <- 0
num_mcmc <- 100
num_samples <- num_gfr + num_burnin + num_mcmc
bart_params <- list(num_trees_mean = 100, num_trees_variance = 50, 
                    alpha_mean = 0.95, beta_mean = 2, min_samples_leaf_mean = 5, 
                    alpha_variance = 0.95, beta_variance = 1.25, 
                    min_samples_leaf_variance = 1, 
                    sample_sigma_global = F, sample_sigma_leaf = F)
bart_model <- stochtree::bart(
    X_train = X_train, y_train = y_train, X_test = X_test, 
    num_gfr = num_gfr, num_burnin = num_burnin, num_mcmc = num_mcmc, 
    params = bart_params
)

Serialization

Save the BART model to disk.

saveBARTModelToJsonFile(bart_model, "bart.json")

Deserialization

Reload the BART model from disk.

bart_model_reload <- createBARTModelFromJsonFile("bart.json")

Check that the predictions align with those of the original model.

bart_preds_reload <- predict(bart_model_reload, X_train)
plot(rowMeans(bart_model$y_hat_train), rowMeans(bart_preds_reload$y_hat), 
     xlab = "Original", ylab = "Deserialized", main = "Conditional Mean Estimates")
abline(0,1,col="red",lwd=3,lty=3)

plot(rowMeans(bart_model$sigma_x_hat_train), rowMeans(bart_preds_reload$variance_forest_predictions), 
     xlab = "Original", ylab = "Deserialized", main = "Conditional Variance Estimates")
abline(0,1,col="red",lwd=3,lty=3)

References

Hahn, P Richard, Jared S Murray, and Carlos M Carvalho. 2020. “Bayesian Regression Tree Models for Causal Inference: Regularization, Confounding, and Heterogeneous Effects (with Discussion).” Bayesian Analysis 15 (3): 965–1056.