Calibrate the scale parameter on an inverse gamma prior for the global error variance as in Chipman et al (2022)
calibrate_inverse_gamma_error_variance.Rd
Chipman, H., George, E., Hahn, R., McCulloch, R., Pratola, M. and Sparapani, R. (2022). Bayesian Additive Regression Trees, Computational Approaches. In Wiley StatsRef: Statistics Reference Online (eds N. Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri and J.L. Teugels). https://doi.org/10.1002/9781118445112.stat08288
Usage
calibrate_inverse_gamma_error_variance(
y,
X,
W = NULL,
nu = 3,
quant = 0.9,
standardize = TRUE
)
Arguments
- y
Outcome to be modeled using BART, BCF or another nonparametric ensemble method.
- X
Covariates to be used to partition trees in an ensemble or series of ensemble.
- W
(Optional) Basis used to define a "leaf regression" model for each decision tree. The "classic" BART model assumes a constant leaf parameter, which is equivalent to a "leaf regression" on a basis of all ones, though it is not necessary to pass a vector of ones, here or to the BART function. Default:
NULL
.- nu
The shape parameter for the global error variance's IG prior. The scale parameter in the Sparapani et al (2021) parameterization is defined as
nu*lambda
wherelambda
is the output of this function. Default:3
.- quant
(Optional) Quantile of the inverse gamma prior distribution represented by a linear-regression-based overestimate of
sigma^2
. Default:0.9
.- standardize
(Optional) Whether or not outcome should be standardized (
(y-mean(y))/sd(y)
) before calibration oflambda
. Default:TRUE
.