Skip to contents

Predict from a sampled BCF model on new data

Usage

# S3 method for class 'bcf'
predict(
  bcf,
  X_test,
  Z_test,
  pi_test = NULL,
  group_ids_test = NULL,
  rfx_basis_test = NULL
)

Arguments

bcf

Object of type bcf containing draws of a Bayesian causal forest model and associated sampling outputs.

X_test

Covariates used to determine tree leaf predictions for each observation. Must be passed as a matrix or dataframe.

Z_test

Treatments used for prediction.

pi_test

(Optional) Propensities used for prediction.

group_ids_test

(Optional) Test set group labels used for an additive random effects model. We do not currently support (but plan to in the near future), test set evaluation for group labels that were not in the training set.

rfx_basis_test

(Optional) Test set basis for "random-slope" regression in additive random effects model.

Value

List of 3-5 nrow(X_test) by bcf$num_samples matrices: prognostic function estimates, treatment effect estimates, (optionally) random effects predictions, (optionally) variance forest predictions, and outcome predictions.

Examples

n <- 500
x1 <- rnorm(n)
x2 <- rnorm(n)
x3 <- rnorm(n)
x4 <- as.numeric(rbinom(n,1,0.5))
x5 <- as.numeric(sample(1:3,n,replace=TRUE))
X <- cbind(x1,x2,x3,x4,x5)
p <- ncol(X)
g <- function(x) {ifelse(x[,5]==1,2,ifelse(x[,5]==2,-1,4))}
mu1 <- function(x) {1+g(x)+x[,1]*x[,3]}
mu2 <- function(x) {1+g(x)+6*abs(x[,3]-1)}
tau1 <- function(x) {rep(3,nrow(x))}
tau2 <- function(x) {1+2*x[,2]*x[,4]}
mu_x <- mu1(X)
tau_x <- tau2(X)
pi_x <- 0.8*pnorm((3*mu_x/sd(mu_x)) - 0.5*X[,1]) + 0.05 + runif(n)/10
Z <- rbinom(n,1,pi_x)
E_XZ <- mu_x + Z*tau_x
snr <- 4
y <- E_XZ + rnorm(n, 0, 1)*(sd(E_XZ)/snr)
X <- as.data.frame(X)
X$x4 <- factor(X$x4, ordered = TRUE)
X$x5 <- factor(X$x5, ordered = TRUE)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- X[test_inds,]
X_train <- X[train_inds,]
pi_test <- pi_x[test_inds]
pi_train <- pi_x[train_inds]
Z_test <- Z[test_inds]
Z_train <- Z[train_inds]
y_test <- y[test_inds]
y_train <- y[train_inds]
mu_test <- mu_x[test_inds]
mu_train <- mu_x[train_inds]
tau_test <- tau_x[test_inds]
tau_train <- tau_x[train_inds]
bcf_model <- bcf(X_train = X_train, Z_train = Z_train, y_train = y_train, pi_train = pi_train)
#> Warning: longer object length is not a multiple of shorter object length
preds <- predict(bcf_model, X_test, Z_test, pi_test)
#> Warning: longer object length is not a multiple of shorter object length
# plot(rowMeans(preds$mu_hat), mu_test, xlab = "predicted",
#      ylab = "actual", main = "Prognostic function")
# abline(0,1,col="red",lty=3,lwd=3)
# plot(rowMeans(preds$tau_hat), tau_test, xlab = "predicted", 
#      ylab = "actual", main = "Treatment effect")
# abline(0,1,col="red",lty=3,lwd=3)